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Abstract. Zhang has put forward the idea that high-temperature-superconductors can be described in the
framework of an SO(5)-symmetric theory in which the three components of the antiferromagnetic order-
parameter and the two components of the two-particle condensate form a five-component order-parameter
with SO(5) symmetry. Interactions small in comparison to this strong interaction introduce anisotropies
into the SO(5)-space and determine whether it is favorable for the system to be superconducting or
antiferromagnetic. Here the view is expressed that Zhang’s derivation of the effective interaction Veff based
on his Hamiltonian Ha is not correct. However, the orthogonality constraints introduced several pages after
this “derivation” give the key to an effective interaction very similar to that given by Zhang. It is shown
that the orthogonality constraints are not rigorous constraints, but they maximize the entropy at finite
temperature. If the interaction drives the ground-state to the largest possible eigenvalues of the operators
under consideration (antiferromagnetic ordering, superconducting condensate, etc.), then the orthogonality
constraints are obeyed by the ground-state, too.

PACS. 71.10.-w Theories and models of many electron systems – 74.20.-z Theories and models of
superconducting state

1 Introduction

In a recent paper [1] Zhang has proposed the idea that
the components of the electron-pair condensate and
those of the antiferromagnetic order-parameter form a
five-component order parameter in an approximately
SO(5)-invariant theory. Anisotropies small in comparison
to the SO(5)-invariant interaction break this symmetry.
They depend in particular on the chemical potential and
thus on doping. This allows him to describe the transition
from antiferromagnetism in the half-filled system to
superconductivity under moderately weak doping.

This phenomenological picture has been tested by nu-
merical calculations for small Hubbard-systems [2,3] and
t-J-models [3,4], for which good agreement with the pre-
dictions from Zhang’s theory are obtained. It has also been
shown that spin-ladders observe SO(5)-symmetry [5,6]
or even SO(8)-symmetry [7].

Returning to higher-dimensional systems, it is pointed
out here that Zhang’s derivation of the effective interac-
tion Veff based on his Hamiltonian Ha seems to be not
correct. (Actually we struggled for quite a while trying
to understand his derivation). However, the orthogonal-
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ity constraints introduced several pages after this “deriva-
tion” give the key to an effective interaction very similar
to that given by Zhang. After having established this in
Section 2 it is shown in Section 3, that the entropy con-
tains squares of these constraint terms. Thus the orthog-
onality constraints are not strict requirements, but their
fulfillment maximizes the entropy and lowers the free en-
ergy. Finally in Section 4 it is argued, that also in the
ground-state these constraints are likely to hold.

2 Effective interaction and the orthogonality
constraint

Zhang introduces a five-component order-parameter ni,
i = 1..5. The operators associated with these components
are given explicitly in the Appendix. Two components, n1

and n5, describe the real part and the imaginary part of
the superconducting condensate, the three other compo-
nents n2, n3, and n4, are the three Cartesian components
of the staggered magnetization. He assumes that a strong
interaction which may be described by a Ginzburg-Landau
interaction, leads to a symmetry breaking below a critical
temperature Tc and has an SO(5) symmetry, thus allowing
both superconducting and antiferromagnetic order. This
leading interaction is a function of

∑
i n

2
i only and does
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not give any preference to superconducting or antiferro-
magnetic order.

In addition there is a weaker interaction Ha which in-
troduces anisotropy into the system

Ha =
L2

1,5

2χc
+
L2

1,2 + L2
1,3 + L2

1,4 + L2
2,5 + L2

3,5 + L2
4,5

2χπ

+
L2

2,3 + L2
2,4 + L2

3,4

2χs
− g

2
(n2

2 + n2
3 + n2

4)− 2µL1,5.

(1)

The La,b are operators bilinear in the electron creation
and annihilation operators. They are given explicitly in
Appendix A. µ is the chemical potential. The operators L
obey Lb,a = −La,b and the commutator relations

[La,b, Lc,d] = −iδb,cLa,d + iδa,cLb,d + iδb,dLa,c − iδa,dLb,c
(2)

of the orthogonal group SO(5), moreover the vector n is
rotated by L,

[La,b, nc] = −iδb,cna + iδa,cnb. (3)

The derivative terms of Zhang’s interaction are left out
here, since only the global state is investigated. The effec-
tive potential is determined as the minimum of the Hamil-
tonian for given order-parameter n1, ... n5, which Zhang
normalizes to ∑

i

n2
i = 1. (4)

Since one considers the interaction for a macroscopic sys-
tem, all the components of L and n can be considered as
classical quantities and the obvious minimum is obtained
for L1,5 = 2µχc, whereas all other components of L van-
ish, which yields what I call V naiv

eff

V naiv
eff (n) = −2µ2χc −

g

2
(n2

2 + n2
3 + n2

4). (5)

It would mean that the only effect of the chemical poten-
tial is a lowering of the energy of the system, but it would
have no effect on an anisotropy in the order-parameter
space. This obviously is at variance with Zhang’s claim
for the effective interaction

V Zhang
eff (n) = −2µ2(n2

1 + n2
5)[χc(n2

1 + n2
5)

+ χπ(n2
2 + n2

3 + n2
4)]− g

2
(n2

2 + n2
3 + n2

4).

(6)

An indication that Zhang’s Lagrangian

La =
∑
a<b

χab
2
ω2
ab + V (n) (7)

ωab = na(∂τnb − iBbcnc)− (a→ b) (8)

is not equivalent to Ha, is obvious from the fact that in
Zhang’s Lagrangian the only allowed rotations are in the

plain spanned by n and ∂τn−iBn, whereas it does not per-
mit a rotation around a second perpendicular plain (which
exists in 5 dimensions) as it should. Thus the description
by La is incomplete.

However, several pages later he introduces the con-
straints

εa,b,c,d,encLd,e = 0. (9)

These constraints, (although not proven in Zhang’s paper,
since (8) is not granted) are the key for the effective inter-
action. If they are fulfilled, then one can conclude, that L
is of the form

La,b = canb − cbna. (10)

(This can be found in the following way: If n1 = 1, and
all other ni vanish, then one finds from (9) La,b = 0, if
both a 6= 1 and b 6= 1. However La,1 = −L1,a = ca for
a 6= 1 can be chosen with arbitrary ca. Thus one obtains in
this special case equation (10). The relation (10) is form-
invariant under SO(5)-rotations. Thus it holds for general
ni.)

Apparently in the literature [1,8] two different rotator
pictures are mixed. The first one starts from the Hamil-
tonian Ha, which describes a rotator with nonvanishing
moments of inertia (actually susceptibilities χ) for rota-
tions in all plains. The second picture seems to consider
n as a rotator with vanishing moments of inertia for ro-
tations in plains perpendicular to n. This second picture
yields immediately equation (10). However, it does not
directly follow from the original (first) picture. Thus, if
equation (9) or (10) is to hold, we have to find a reason
for it, which will be given in Section 3.

Let us return to equation (10). It has two conse-
quences:

(i) One can now parametrize Ha in terms of the ci and
determine the minimum as one varies the coefficients c.
One finds the minimum for

c2 = c3 = c4 = 0, c1 =
2µn5

N
, c5 = −2µn1

N
(11)

with

N =
n2

1 + n2
5

χc
+
n2

2 + n2
3 + n2

4

χπ
· (12)

From this one obtains the effective interaction

Veff = −2µ2n
2
1 + n2

5

N
− g

2
(n2

2 + n2
3 + n2

4). (13)

For χc = χπ it agrees with V Zhang
eff . If χc 6= χπ, then the

effective potentials are different (actually in first order in
χc − χπ there is still agreement), but many conclusions
Zhang has drawn will continue to hold. After submission of
this paper I was kindly informed by Zhang and Auerbach,
that the effective potential equation (13) was already de-
rived in equation (108) of Auerbach’s lecture notes of the
Chia Laguna Summer School [8].
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(ii) The constraints imply, that out of the representa-
tions (λ1, λ2) the only allowed states have representations
of the form (λ1, 0). Let me explain this shortly. The irre-
ducible representations of SO(5) are characterized by two
(non negative) numbers (λ1, λ2) with λ1 ≥ λ2 ≥ 0. The
first number is the largest eigenvalue of one of the opera-
tors L, say L1,2. Next consider the subspace of the states in
this representation with this eigenvalue λ1 for L1,2. Then
λ2 is the largest eigenvalue of one of the operators L, that
commutes with the first one, which may be L3,4 in this
subspace. Semiclassically, that is for large λ1 and λ2, one
may replace the operators La,b by their expectation val-
ues. Then the eigenvalues of the antisymmetric matrix L
are ±iλ1, ±iλ2 and 0. If L has the form (10), then

λ1 =
√∑

i

c2i
∑
j

n2
j − (

∑
i

cini)2, λ2 = 0. (14)

Therefore the main problem left is to understand why the
orthogonality constraints should hold. This will be done
in the next section.

3 Entropy as source of the orthogonality
constraint

We claim that the orthogonality constraints are an effect
of entropy. It will be shown that a system even without
any interaction has entropic parts of the form

−
(
εa,b,c,d,encLd,e

)2 (15)

which make it favorable for the system to obey the orthog-
onality constraints. Thus (9) is not a strict constraint, but
if it is fulfilled, then the entropy assumes a maximum.

3.1 Entropy of the Heisenberg antiferromagnet

First consider the Heisenberg antiferromagnet as an ex-
ample, which Zhang has rightly mentioned in his paper.
The Heisenberg antiferromagnet consists of two sublat-
tices with magnetizations m1 and m2. We expand the en-
tropy in powers of m2

1 and m2
2. Since the two sublattice-

magnetizations describe the behaviour on different sub-
lattices, the entropy is a sum of contributions on these
sublattices

S = S0 − c1(m2
1 + m2

2)− c2
(
(m2

1)2 + (m2
2)2
)
− ... (16)

Then denoting the homogeneous magnetization by m0 and
the staggered magnetization by mq0 we may write m1 =
m0 + mq0 and m2 = m0 −mq0 and obtain the entropy

S = S0 − 2c1(m2
0 + m2

q0)− 2c2
(
m2

0 + m2
q0

)2
− 8c2

(
m0 ·mq0

)2 − ... (17)

Thus if there is no coupling in the interaction between
m0 and mq0 , the system prefers to have the homogeneous

and the staggered magnetization orthogonal to each other
due to the contribution −8c2(m0 ·mq0)2 in the entropy.
Remember that the entropy enters into the free energy
with a minus sign (F = E − TS), and thus m0 ·mq0 = 0
will yield the minimum of the free energy. Thus there is
not a strict constraint m0 ·mq0 = 0 for the Heisenberg
antiferromagnet, but there is a term proportional to the
square (m0 · mq0)2 in the free energy, which favors the
constraint to be obeyed.

3.2 The entropy

It will now be shown that the entropy of the more
general SO(5)-invariant system contains terms of type
(εa,b,c,d,encLd,e)2. We will actually enlarge the system of
operators La,b to those of an SO(8) (for details see in the
Appendix). To determine the entropy we start from the
Hamiltonian

HΩ =
∑
a,b

Ωa,bLa,b, Ωb,a = −Ωa,b (18)

where the set of our La,b also includes the na = La,0.
We do no longer use the normalization (4). We note,
that recently a U(4)-scheme including the operators
La,b with a, b = 0..5 and L6,7 and their sub-groups
has been considered in [9] (note that SU(4) is iso-
morphous to SO(6)). Similar ideas are found in [10].
The Ω are introduced as Lagrange multipliers and will
be adjusted to yield given expectation values of La,b,
and the entropy will be calculated up to fourth order in L.

Ω is an eight-dimensional antisymmetric real matrix.
Since the matrix is antihermitean, its eigenvalues are
purely imaginary and occur pairwise. Thus the eigenvalue
equation can be written∑

b

Ωa,b(x
(k)
b ± iy(k)

b ) = ±iω(k)(x(k)
a ± iy(k)

a ) (19)

with k = 1..4 and real vectors x(k) and y(k). The vectors
x(k) and y(k) are orthogonal to each other. If they are
normalized, then Ω may be represented

Ωa,b =
∑
k

ω(k)(x(k)
a y

(k)
b − x

(k)
b y(k)

a ). (20)

Next we perform a special orthogonal transformation, so
that x(k) and y(k) are oriented in appropriate directions,
e.g. so that x(1), y(1) point in the 5- and 1- direction, x(2),
y(2) in the 2- and 3-direction, x(3) and y(3) in the 0- and
7-direction and x(4) and y(4) in the 4- and 6- direction,
respectively. After this special orthogonal transformation
H reads

Htrans =

2(ω(1)N0
0,1,1 + ω(2)N0

0,1,σz + ω(3)N0
0,g,1 − ω(4)N0

0,g,σz)

=
∑
k,s

(ω(1) + ω(2)s+ ω(3)g(k)− ω(4)g(k)s)(c†k,sck,s −
1
2

)

(21)
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(with s = ±1, g(k) = ±1, g(k + q0) = −g(k)). Thus for
momenta k and k + q0 one has in total 24 states con-
structed out of four single-particle states, which may be
either occupied or unoccupied and which contribute the
energies ± 1

2εs,g depending on whether the state is occu-
pied or unoccupied

εs,g = ω(1) + ω(2)s+ ω(3)g − ω(4)gs. (22)

Then we obtain for the partition function Z

lnZ =
∑

ln
(

exp
(

1
2
βε

)
+ exp

(
−1

2
βε

))
=
∑(

ln 2 +
x2

2
− x4

12
+O(x6)

)
, x =

βε

2
· (23)

Summation over the four states yields∑
x2 = β2

∑
i

ω(i)2 (24)

∑
x4 =

β4

4

∑
i

ω(i)4 + 6
∑
i<j

ω(i)2ω(j)2 − 24ω(1)ω(2)ω(3)ω(4)

 .

(25)

Similarly we expand the entropy S

S = kB

∑(
ln 2− x2

2
+
x4

4
+O(x6)

)
(26)

and determine the expectation value of the quantity L(i)

conjugate to ω(i) (only the first component is given; the
others are obtained by permutation),

L(1) =
∂ lnZ

2β∂ω(1)
=
β

2
ω(1)

− β3

24
(
ω(1)3 + 3ω(1)(ω(2)2 + ω(3)2 + ω(4)2)

− 6ω(2)ω(3)ω(4)
)

+O(ω5) (27)

and express ω(i) in terms of L(i),

βω(1) = 2L(1) +
2
3
(
L(1)3 + 3L(1)(L(2)2 + L(3)2 + L(4)2)

− 6L(2)L(3)L(4)
)

+O(L5). (28)

In diagonal form one has L(1) = L5,1, etc. Then S for the
subspace of the electrons with momenta k and k+q0 reads

S/kB = 4 ln 2− 2
∑
i

L(i)2

− 1
3

∑
i

L(i)4 + 6
∑
i<j

L(i)2L(j)2 − 24L(1)L(2)L(3)L(4)


+O(L6). (29)

Thus we have expressed the entropy in terms of the eigen-
values ±iL(i) of the 8× 8-matrix (La,b) of the expectation
values La,b. We will express it now by the matrix-elements
of L. First we have∑

i

L(i)2 = −1
2

TrL2 = −
∑
a<b

L2
a,b, (30)

∑
i

L(i)4 =
1
2

TrL4 =
∑
a<b

L4
a,b + 2

∑
a,b<c

L2
a,bL

2
a,c

+ 4
∑

a<b,a<c<d,b6=c,b6=d
La,cLa,dLb,cLb,d, (31)

∑
i

L(i)4 + 2
∑
i<j

L(i)2L(j)2 =
1
4

(TrL2)2

=
∑
a<b

L4
a,b + 2

∑
a,b<c

L2
a,bL

2
a,c + 2

∑
a<b,a<c<d,b6=c,b6=d

L2
a,bL

2
c,d,

(32)

L(1)L(2)L(3)L(4) = pf(L), (33)

where pf(L) is the Pfaffian of L. In our case the indices a,
b of the elements La,b are numbered from 0 to 7. Then the
Pfaffian (which is defined only for antisymmetric matrices)
is the sum

∑7
k=1(−)k−1L0,kPk, where Pk is the Pfaffian

of the matrix obtained from the matrix L by deleting the
rows and columns with index 0 (that is the first one) and
index k. One continues recursively until the Pfaffian of a
matrix with no entry is left, which is defined to equal 1.
(If one starts with a matrix of odd dimension, then finally
one arrives at the Pfaffian of the 1×1 matrix with entry 0,
since it has to be antisymmetric. This Pfaffian is defined
to equal 0. Therefore the Pfaffian of a matrix of odd di-
mensions vanishes.) We mention that the determinant of
an antisymmetric matrix equals the square of its Pfaffian.
For 2× 2 and 4× 4 matrices the Pfaffians read

pf
(

0 La,b
−La,b 0

)
= La,b (34)

pa,b,c,d := pf


0 La,b La,c La,d

−La,b 0 Lb,c Lb,d
−La,c −Lb,c 0 Lc,d
−La,d −Lb,d −Lc,d 0


= La,bLc,d − La,cLb,d + La,dLb,c. (35)

Then we have

S/kB = 4 ln 2 + TrL2 − 1
3
(3

4
(TrL2)2 − TrL4 − 24pf(L)

)
.

(36)
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(Note that TrL2 is negative). Further algebraic manipula-
tions yield

−TrL4 = −1
2

(TrL2)2 + 4
∑

a<b<c<d

p2
a,b,c,d, (37)

24pf(L) = 4
∑

a<b<c<d, e<f<g<h

εa,b,c,d,e,f,g,h pa,b,c,d pe,f,g,h. (38)

Putting all the contributions together we obtain

S/kB = 4 ln 2 + TrL2 − 1
12

(TrL2)2

− 4
3

∑
0<a<b<c

(
p0,a,b,c −

∑
d<e<f<g

εa,b,c,d,e,f,gpd,e,f,g
)2+O(L6).

(39)

This corresponds to the separation of (29) into

S/kB = 4 ln 2− 2
∑
i

L(i)2 − 1
3

(∑
i

L(i)2

)2

− 4
3
(
(L(1)L(2)−L(3)L(4))2+(L(1)L(3)−L(2)L(4))2

+ (L(1)L(4) − L(2)L(3))2
)

+O(L6). (40)

Thus the entropy consists of a completely rotational in-
variant contribution depending only on TrL2 and a neg-
ative sum of squares of p0,a,b,c ± pd,e,f,g. Note that the
sum over d, e, f, g contains exactly one term ±p. Thus
a maximum of the entropy is reached, when the argu-
ments of all the squares vanish. Provided La,b vanishes
if a or b equals 6 or 7 as assumed in the SO(5) the-
ory, then out of the 35 squares 20 vanish identically, 10
have the form εa,b,c,d,encLd,e, which when required to van-
ish are Zhang’s orthogonality constraints, and 5 have the
form εa,b,c,d,eLb,cLd,e. One can easily see from (10), that
if Zhang’s orthogonality constraints are fulfilled, then also
these latter quantities vanish. Thus the orthogonality con-
straints are not strict requirements, but their fulfillment
lowers the free energy.

We mention, that the vanishing of the squares in the
second line of (40) implies two types of solutions, either
one L(i) can be different from zero and the other L(j)

vanish, or all |L(i)| are equal, and the product of the four
L(i) is positive.

At half-filling (no doping) one has L1,5 = 0. Then in
the antiferromagnetic state, that is for non-vanishing com-
ponents L2,0, L3,0, and L4,0, but otherwise vanishing com-
ponents L, only one eigenvalue L(i) is different from zero.
As soon as one has some doping L1,5 is different from 0.
If the system is still antiferromagnetic, then more than
one eigenvalue differs from zero. On the other hand, if the
modes associated with n6 = L6,0 or n7 = L7,0 are massive,
as assumed, then it costs energy to have all four eigenval-
ues L(i) different from zero. Then it becomes preferable
to have the superconducting components n1 = L1,0 and
n5 = L5,0 different from zero and to have vanishing anti-
ferromagnetism, since then again one has only one nonva-
nishing eigenvalue L(i).

4 Limits for the ground state

The entropy argument given in the preceding section can
be applied in the vicinity of the critical temperature. At
low temperatures the contribution of the entropy to the
free energy decreases, since it enters with the factor T .
Therefore we consider separately the situation at low tem-
peratures.

4.1 Antiferromagnet

Let us start with a simple consideration for the antifer-
romagnet. Assume again two sublattices with magnetiza-
tion m1 and m2. Assume they are restricted by upper
bounds |m1| ≤ 1, |m2| ≤ 1. Suppose now the system
has a homogeneous magnetization m0. If now a staggered
magnetization parallel to m0 is added, then apparently
|mq0 | ≤ 1− |m0|. If however the staggered magnetization
is perpendicular to the homogeneous one, then one has
the weaker restriction |mq0 | ≤

√
1−m2

0. Thus the an-
tiferromagnetic interaction can act more strongly, if the
staggered magnetization is perpendicular to the homoge-
neous one. Thus again m0 ·mq0 = 0 is fulfilled.

4.2 Hartree-Fock-Bogoliubov ground state

We have seen, that at low temperatures the bounds
on the appropriate quantities (order-parameters) are
important for the ordering of the ground-state. Therefore
we will consider the bounds of the eigenvalues ±iL(i) of
the matrix L. If for a fixed matrix Ω in (18) one takes
the low temperature limit β → ∞, then normally a pure
Hartree-Fock-Bogoliubov state instead of a mixed state
remains. Depending on the sign of εs,g the occupation
number ns,g assumes one of its extremal values 0 and 1
in the diagonal representation Htrans (21)

ns,g =
1
2
− 1

2
signεs,g. (41)

From this we obtain the eigenvalues L(i)

L(1) =
1
2

∑
s,g

ns,g − 1 (42)

L(2) =
1
2

∑
s,g

s ns,g (43)

L(3) =
1
2

∑
s,g

g ns,g (44)

L(4) =
1
2

∑
s,g

sg ns,g. (45)
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Putting now ns,g = 0 or 1 in all combinations one finds two
types of solutions for L(i). In the first class one L(i) = ±1
and the other L(j) = 0, whereas in the second class one
has L(i) = ± 1

2 for all i with the restriction for the signs,
that the product of all L(i) is positive. One easily realizes
that in all these cases the squares in the second line of
equation (40) vanish. As a consequence the orthogonal-
ity constraints are fulfilled for these states. The eigen-
values obtained for the Hartree-Fock-Bogoliubov ground-
state are the extremal ones. For correlated states these
eigenvalues can only be reduced. More precisely, the range
of the set of possible eigenvalues L(1), ... L(4) lies in the
convex volume bounded by the extremes given above. For
an interaction quadratic in the operators L the energy as-
sumes extremal eigenvalues for extremal eigenvalues L in
the case of symmetry breaking. Without symmetry break-
ing the eigenvalues would vanish. We have argued before in
favour of only one non-vanishing eigenvalue L(i). Reduced
to SO(5) this would be λ1, whereas the second largest
(vanishing one) is λ2 of the representation (λ1, λ2). These
correspond to the representations (λ1,0) actually found in
the numerical calculations [4,3].

5 Conclusion

We have shown that the orthogonality constraints in-
troduced by Zhang in his SO(5)-theory of high Tc-
superconductivity play an important role in the mecha-
nism for the transition from antiferromagnetism to su-
perconductivity as a function of doping. We have further
shown that these constraints are not strictly fulfilled, but
that their fulfillment yields a maximum of the entropy (for
fixed

∑
L2
a,b). At low temperatures the entropy plays a

weaker role. However, if the interaction drives the ground-
state to the case of extremal eigenvalues L(i), which may
be very well the case for an interaction bilinear in the
operators L, then again the orthogonality constraints are
fulfilled.

We have expanded our scheme to a (mathematically
natural) SO(8)-scheme. In this scheme two types of solu-
tions for maximal entropy or extremal eigenvalues appear.
Since the added degrees of freedom are probably massive,
only those solutions, for which one eigenvalue is different
from zero and the other ones vanish yield the minimum in
the free energy.

These considerations did not take the microscopic in-
teraction seriously into account. Work in this direction has
to be done.

I am indebted to A. Mielke and J. Stein for useful comments.

Appendix A: Operators in an SO(8) space

A.1 Bilinear operators

All the operators in the SO(5) theory are of the form

N+
q,f,γ =

1
2

∑
k,s,t

f(k)c†k+q,s(γσ
y)s,tc

†
−k,t, (A.1)

N0
q,f,γ =

1
2

∑
k,s,t

f(k)γs,t(c
†
k+q,sck,t −

1
2
δq,0δs,t), (A.2)

N−q,f,γ =
1
2

∑
k,s,t

f(k)ck+q,s(σyγ)s,tc−k,t. (A.3)

Here the summation k runs over the Brillouin zone. The
vector q can either be 0 or q0, where 2q0 is a reciprocal
lattice vector. The staggered magnetization is described
by the wave-vector q0 as above. The function f(k) stands
either for 1 or g(k) with g(k) = g(−k) = −g(k+q0) = ±1.
Finally γ is a hermitean two by two matrix. It may be
either the unit matrix or one of the Pauli matrices.

First we consider the symmetry of N+. If we exchange
the two c†-operators, then we obtain

N+
q,f,γ = N+

q,f(.+q),σyγTσy
. (A.4)

One has

f(.+ q) = sq,ff with sq,f =
{

1 for q = 0 or f = 1,
−1 for q = q0 and f = g

(A.5)

and

σyγTσy = sγγ with sγ =
{

+1 for γ = 1
−1 for Pauli matrices

.

(A.6)

From this we conclude that only the six operators N+
0,1,1,

N+
0,g,1, N+

q0,1,1
, N+

q0,g,σα with sq,fsγ = 1 are different from
zero. The same holds for N−.

The hermitean adjoint operators are

(N−q,f,γ)† = sq,fN
+
q,f,γ† , (A.7)

(N0
q,f,γ)† = sq,fN

0
q,f,γ† . (A.8)

We obtain for the commutators

[N+
q,f,γ , N

+
q′,f ′,γ′ ] = 0, (A.9)

[N−q,f,γ , N
−
q′,f ′,γ′ ] = 0, (A.10)

[N−q,f,γ , N
+
q′,f ′,γ′ ] = −2N0

q′−q,ff ′(.−q),γγ′, (A.11)

[N−q,f,γ , N
0
q′,f ′,γ′ ] = N−q−q′,f(.−q′)f ′,γγ′ , (A.12)

[N0
q,f,γ , N

+
q′,f ′,γ′ ] = N+

q+q′,f(.+q′)f ′,γγ′, (A.13)

[N0
q,f,γ , N

0
q′,f ′,γ′ ] =

1
2

(N0
q+q′,f(.+q′)f ′,γγ′

−N0
q+q′,ff ′(.+q),γ′γ). (A.14)
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A.2 Zhang’s Operators

The operators introduced by Zhang, which obey the com-
mutator relations (2) of an SO-group were

L5,1 = Q = N0
0,1,1, (A.15)

L1+α,1 =
1
2

(π†α + πα), π†α = N+
q0,g,σα , (A.16)

L5,1+α =
−i
2

(π†α − πα), πα = −N−q0,g,σα , (A.17)

L1+α,1+β = εα,β,γS0,γ , S0,γ = N0
0,1,σγ , (A.18)

n1 = L1,0 =
1
2

(∆† +∆),∆† = iN+
0,g,1, (A.19)

n5 = L5,0 =
i
2

(∆† −∆),∆ = −iN−0,g,1, (A.20)

n1+α = L1+α,0 = Sq0,α = N0
q0,1,σα . (A.21)

Here we have added na = La,0 to the group, since they
obey the same commutator relations.

A.3 Extension to operators obeying an SO(8) group

Obviously one can expand the range of operators La,b by
including the other operators N introduced above so that
any pairs of particles, of holes or particle-hole pairs with
total momentum 0 or q0 in the singlet and triplet chan-
nel appear. This allows us to introduce components La,b
with a, b = 6 or 7. This expansion does not imply, that
the symmetry group for the phase transition will be en-
larged. Actually one expects that the new components of
the “order-parameter” stay massive at the transition and
will not contribute directly to the symmetry-breaking.

It is well-known [11,12] that there are additional op-
erators adding or removing two electrons, η† and η, which
commute with the Hubbard Hamiltonian, which allows us
by means of the commutator relations (2) to introduce

L1,6 =
i
2

(η − η†), η† = N+
q0,1,1

, (A.22)

L5,6 =
1
2

(η† + η), η = N−q0,1,1, (A.23)

L1+α,6 = −N0
0,g,σα , (A.24)

n6 = L6,0 = iN0
q0,g,1. (A.25)

Finally there are 7 more operators left, which fulfill the
appropriate commutator relations with

L1,7 =
1
2

(η̃† + η̃), η̃† = N+
0,1,1, (A.26)

L5,7 =
i
2

(η̃† − η̃), η̃ = N−0,1,1, (A.27)

L1+α,7 = iN0
q0,g,σα , (A.28)

L6,7 = −N0
q0,1,1, (A.29)

n7 = L7,0 = −N0
0,g,1. (A.30)
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